216 research outputs found

    Height-diameter allometry of tropical forest trees

    Get PDF
    Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were: 1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap). 2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A). 3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass. Annual precipitation coefficient of variation (PV), dry season length (SD), and mean annual air temperature (TA) emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere. The region-environment-structure model with the lowest Akaike\u27s information criterion and lowest deviation estimated stand-level H across all plots to within amedian −2.7 to 0.9% of the true value. Some of the plot-to-plot variability in H:D relationships not accounted for by this model could be attributed to variations in soil physical conditions. Other things being equal, trees tend to be more slender in the absence of soil physical constraints, especially at smaller D. Pantropical and continental-level models provided less robust estimates of H, especially when the roles of climate and stand structure in modulating H:D allometry were not simultaneously taken into account

    Effects of Added Copper and Zinc on Growth Performance and Carcass Characteristics of Finishing Pigs Fed Diets with or without Ractopamine HCl

    Get PDF
    A total of 480 pigs (PIC 327 × 1050; initially 107.4 lb) were used to determine the interactive effects of supplemental Cu, Zn, and Ractopamine HCl on finishing pig growth performance, carcass characteristics, and antimicrobial susceptibility of enteric bacteria. Dietary treatments were arranged in a 2 × 2 × 2 factorial with main effects of added copper sulfate (CuSO4; 0 vs. 125 ppm Cu), added zinc oxide (ZnO; 0 vs. 150 ppm Zn), and Ractopamine HCl (0 vs. 10 ppm during the last 28 d prior to marketing; Paylean®; Elanco Animal Health, Greenfield, IN). All finishing diets were fed in four phases in meal form and contained 11 ppm Cu and 73 ppm Zn from the trace mineral premix. The study design was structured as a randomized complete block design and replicated with two finishing groups. Pigs were randomly allotted to pens upon entry into the finisher barn. Pens of seven (group 1) or eight (group 2) pigs were balanced on initial BW and randomly allotted to 1 of the 4 mineral treatment diets with two treatment replications per weight block and four weight blocks per finishing group. At 28 d prior to marketing, pens within each block and mineral treatment were randomly assigned to receive either 0 or 10 ppm Ractopamine HCl in addition to the mineral treatment. At the conclusion of the 90-d (group 1) or 83-d (group 2) finishing period, carcass characteristics were measured. Adding Cu or Zn alone resulted in numerical improvements in overall F/G and caloric efficiencies; however, the improvements were not additive (Cu × Zn, P = 0.065, 0.068, and 0.064 for F/G and caloric efficiency on a ME and NE basis, respectively). No significant improvements were observed in overall ADG or ADFI due to added Cu and/or Zn. In contrast, Ractopamine HCl improved (P \u3c 0.001) overall ADG, F/G, and caloric efficiency, thereby increasing final BW by 3% with no change in ADFI. Ractopamine HCl also increased (P \u3c 0.001) HCW, percentage carcass yield, and HCW F/G. Adding Zn or Cu alone to diets containing Ractopamine HCl numerically improved percentage carcass yield and HCW F/G, but this effect was not present when the mineral was added to the control diet or when the minerals were fed in combination in the Ractopamine HCl diets (Cu × Zn × Ractopamine, P = 0.011 and 0.024 respectively). Regardless of HCW, pigs fed Ractopamine HCl had decreased (P = 0.014) backfat, increased (P \u3c 0.001) loin depth, and percent fat-free lean. No effects of added minerals on these carcass traits were observed. In summary, the addition of 125 ppm Cu and/or 150 ppm Zn to diets containing Ractopamine HCl failed to improve finishing pig growth performance and carcass characteristics while 10 ppm Ractopamine HCl increased lean tissue deposition and improved feed and caloric efficiency

    Intensification of the Amazon hydrological cycle over the last two decades

    Get PDF
    Reproduced with permission of the publisher. Online Open article. © 2013 American Geophysical UnionThe Amazon basin hosts half the planet's remaining moist tropical forests, but they may be threatened in a warming world. Nevertheless, climate model predictions vary from rapid drying to modest wetting. Here we report that the catchment of the world's largest river is experiencing a substantial wetting trend since approximately 1990. This intensification of the hydrological cycle is concentrated overwhelmingly in the wet season driving progressively greater differences in Amazon peak and minimum flows. The onset of the trend coincides with the onset of an upward trend in tropical Atlantic sea surface temperatures (SST). This positive longer-term correlation contrasts with the short-term, negative response of basin-wide precipitation to positive anomalies in tropical North Atlantic SST, which are driven by temporary shifts in the intertropical convergence zone position. We propose that the Amazon precipitation changes since 1990 are instead related to increasing atmospheric water vapor import from the warming tropical Atlantic

    Representation of fire, land-use change and vegetation dynamics in the Joint UK Land Environment Simulator vn4.9 (JULES)

    Get PDF
    Disturbance of vegetation is a critical component of land cover, but is generally poorly constrained in land surface and carbon cycle models. In particular, land-use change and fire can be treated as large-scale disturbances without full representation of their underlying complexities and interactions. Here we describe developments to the land surface model JULES (Joint UK Land Environment Simulator) to represent land-use change and fire as distinct processes which interact with simulated vegetation dynamics. We couple the fire model INFERNO (INteractive Fire and Emission algoRithm for Natural envirOnments) to dynamic vegetation within JULES and use the HYDE (History Database of the Global Environment) land cover dataset to analyse the impact of land-use change on the simulation of present day vegetation. We evaluate the inclusion of land use and fire disturbance against standard benchmarks. Using the Manhattan metric, results show improved simulation of vegetation cover across all observed datasets. Overall, disturbance improves the simulation of vegetation cover by 35 % compared to vegetation continuous field (VCF) observations from MODIS and 13 % compared to the Climate Change Initiative (CCI) from the ESA. Biases in grass extent are reduced from −66 % to 13 %. Total woody cover improves by 55 % compared to VCF and 20 % compared to CCI from a reduction in forest extent in the tropics, although simulated tree cover is now too sparse in some areas. Explicitly modelling fire and land use generally decreases tree and shrub cover and increases grasses. The results show that the disturbances provide important contributions to the realistic modelling of vegetation on a global scale, although in some areas fire and land use together result in too much disturbance. This work provides a substantial contribution towards representing the full complexity and interactions between land-use change and fire that could be used in Earth system models

    The influence of C₃ and C₄ vegetation on soil organic matter dynamics in contrasting semi-natural tropical ecosystems

    Get PDF
    Variations in the carbon isotopic composition of soil organic matter (SOM) in bulk and fractionated samples were used to assess the influence of C3 and C4 vegetation on SOM dynamics in semi-natural tropical ecosystems sampled along a precipitation gradient in West Africa. Differential patterns in SOM dynamics in C3/C4 mixed ecosystems occurred at various spatial scales. Relative changes in C / N ratios between two contrasting SOM fractions were used to evaluate potential site-scale differences in SOM dynamics between C3- and C4-dominated locations. These differences were strongly controlled by soil texture across the precipitation gradient, with a function driven by bulk delta 13C and sand content explaining 0.63 of the observed variability. The variation of delta 13C with soil depth indicated a greater accumulation of C3-derived carbon with increasing precipitation, with this trend being also strongly dependant on soil characteristics. The influence of vegetation thickening on SOM dynamics was also assessed in two adjacent, but structurally contrasting, transitional ecosystems occurring on comparable soils to minimise confounding effects posed by climatic and edaphic factors. Radiocarbon analyses of sand-size aggregates yielded relatively short mean residence times (T) even deep in the soil, while the most stable SOM fraction associated to silt and clay exhibited shorter T in the savanna woodland than in the neighbouring forest stand. These results together with the vertical variation observed in delta 13C values, strongly suggest that both ecosystems are undergoing a rapid transition towards denser closed canopy formations. However, vegetation thickening varied in intensity at each site and exerted contrasting effects on SOM dynamics. This study shows that the interdependence between biotic and abiotic factors ultimately determine whether SOM dynamics of C3- and C4-derived vegetation are at variance in ecosystems where both vegetation types coexist. The results highlight the far-reaching implications that vegetation thickening may have for the stability of deep SOM

    Age, extent and carbon storage of the central Congo Basin peatland complex

    Get PDF
    Peatlands are carbon-rich ecosystems that cover just three per cent of Earth's land surface, but store one-third of soil carbon. Peat soils are formed by the build-up of partially decomposed organic matter under waterlogged anoxic conditions. Most peat is found in cool climatic regions where unimpeded decomposition is slower, but deposits are also found under some tropical swamp forests. Here we present field measurements from one of the world's most extensive regions of swamp forest, the Cuvette Centrale depression in the central Congo Basin. We find extensive peat deposits beneath the swamp forest vegetation (peat defined as material with an organic matter content of at least 65 per cent to a depth of at least 0.3 metres). Radiocarbon dates indicate that peat began accumulating from about 10,600 years ago, coincident with the onset of more humid conditions in central Africa at the beginning of the Holocene. The peatlands occupy large interfluvial basins, and seem to be largely rain-fed and ombrotrophic-like (of low nutrient status) systems. Although the peat layer is relatively shallow (with a maximum depth of 5.9 metres and a median depth of 2.0 metres), by combining in situ and remotely sensed data, we estimate the area of peat to be approximately 145,500 square kilometres (95 per cent confidence interval of 131,900-156,400 square kilometres), making the Cuvette Centrale the most extensive peatland complex in the tropics. This area is more than five times the maximum possible area reported for the Congo Basin in a recent synthesis of pantropical peat extent. We estimate that the peatlands store approximately 30.6 petagrams (30.6 × 10(15) grams) of carbon belowground (95 per cent confidence interval of 6.3-46.8 petagrams of carbon)-a quantity that is similar to the above-ground carbon stocks of the tropical forests of the entire Congo Basin. Our result for the Cuvette Centrale increases the best estimate of global tropical peatland carbon stocks by 36 per cent, to 104.7 petagrams of carbon (minimum estimate of 69.6 petagrams of carbon; maximum estimate of 129.8 petagrams of carbon). This stored carbon is vulnerable to land-use change and any future reduction in precipitation

    Biogeographic distributions of neotropical trees reflect their directly measured drought tolerances

    Get PDF
    High levels of species diversity hamper current understanding of how tropical forests may respond to environmental change. In the tropics, water availability is a leading driver of the diversity and distribution of tree species, suggesting that many tropical taxa may be physiologically incapable of tolerating dry conditions, and that their distributions along moisture gradients can be used to predict their drought tolerance. While this hypothesis has been explored at local and regional scales, large continental-scale tests are lacking. We investigate whether the relationship between drought-induced mortality and distributions holds continentally by relating experimental and observational data of drought-induced mortality across the Neotropics to the large-scale bioclimatic distributions of 115 tree genera. Across the different experiments, genera affiliated to wetter climatic regimes show higher drought-induced mortality than dry-affiliated ones, even after controlling for phylogenetic relationships. This pattern is stronger for adult trees than for saplings or seedlings, suggesting that the environmental filters exerted by drought impact adult tree survival most strongly. Overall, our analysis of experimental, observational, and bioclimatic data across neotropical forests suggests that increasing moisture-stress is indeed likely to drive significant changes in floristic composition

    The spectrum of natural forest disturbances and the Amazon forest carbon balance.

    Get PDF
    Estimates of the atmospheric accumulation of anthropogenic CO2 emissions indicate a large terrestrial carbon sink in recent decades. Intact tropical forests may contribute a substantial fraction of this. While current estimates are based on data from forest inventory plots, these plot studies have been criticized for failure to represent landscape scale processes especially the frequency of severe natural disturbances. Here we characterize the frequency distribution of disturbance events in natural forests from 0.01 ha to 2,651 ha size throughout Amazonia using a novel combination of forest inventory, airborne lidar and satellite remote sensing data. We find that small-scale mortality events are responsible for aboveground biomass losses of about 88.3% over the entire Amazon region. We also find that intermediate-scale disturbances account for losses around 12.7%, and that the largest-scale disturbances as a result of blow-downs only accounts for losses of around 0.02%. Stochastic simulation of growth and mortality based on data from the forest plot census network and the region-wide disturbance spectrum together indicate that rare large disturbances are outweighed by the net biomass gains measured, supporting the inference of a substantial carbon sink in old-growth Amazon forests

    Fast demographic traits promote high diversification rates of Amazonian trees.

    Get PDF
    The Amazon rain forest sustains the world's highest tree diversity, but it remains unclear why some clades of trees are hyperdiverse, whereas others are not. Using dated phylogenies, estimates of current species richness and trait and demographic data from a large network of forest plots, we show that fast demographic traits ? short turnover times ? are associated with high diversification rates across 51 clades of canopy trees. This relationship is robust to assuming that diversification rates are either constant or decline over time, and occurs in a wide range of Neotropical tree lineages. This finding reveals the crucial role of intrinsic, ecological variation among clades for understanding the origin of the remarkable diversity of Amazonian trees and forests

    Does the disturbance hypothesis explain the biomass increase in basin-wide Amazon forest plot data?

    Get PDF
    Positive aboveground biomass trends have been reported from old-growth forests across the Amazon basin and hypothesized to reflect a large-scale response to exterior forcing. The result could, however, be an artefact due to a sampling bias induced by the nature of forest growth dynamics. Here, we characterize statistically the disturbance process in Amazon old-growth forests as recorded in 135 forest plots of the RAINFOR network up to 2006, and other independent research programmes, and explore the consequences of sampling artefacts using a data-based stochastic simulator. Over the observed range of annual aboveground biomass losses, standard statistical tests show that the distribution of biomass losses through mortality follow an exponential or near-identical Weibull probability distribution and not a power law as assumed by others. The simulator was parameterized using both an exponential disturbance probability distribution as well as a mixed exponential–power law distribution to account for potential large-scale blowdown events. In both cases, sampling biases turn out to be too small to explain the gains detected by the extended RAINFOR plot network. This result lends further support to the notion that currently observed biomass gains for intact forests across the Amazon are actually occurring over large scales at the current time, presumably as a response to climate change
    corecore